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Executive Summary 
Australia’s boom in rooftop solar is creating value opportunities for households to shift electricity 
consumption to the sunny and increasingly low-cost daytime and away from times when the sun has set. 
Mobilising households to undertake within-day energy use shifting is crucial for maximising the environmental 
benefits and economic value from renewable energy investment in Australia. Can so-called “solar sponge” 
tariffs or “peak shave” tariffs encourage households to meaningfully shift the timing of their energy use? If so, 
which tariff structures are most effective? Can it be demonstrated to electricity providers that such tariffs are 
worthwhile?  

The objective of this project was to design and test monetary and non-monetary incentives to encourage 
households to shift their within-day electricity use to align with solar energy output. It involved the design, 
implementation and evaluation of the Load-shifting Challenge, a randomised controlled trial (RCT) specifically 
designed to test the impact of different incentive schemes on household load shifting, energy procurement 
costs and net program costs. The incentive schemes differed across three dimensions:  

i. incentives to move consumption into daylight hours (solar sponge incentives) versus incentives to 
move away from non-daylight hours (peak shave incentives),  

ii. financial subsidies and rebates per kWh shifted versus a non-monetary incentive scheme where 
households earn status points per kWh shifted, and  

iii. incentives that target routine (every day) actions versus those that target ad hoc (less frequent) 
actions. This resulted in eight different incentive schemes that were randomly allocated to 
participants in the Load-shifting Challenge.  

The experimental design allowed for insight into features critical to engaging households to alter their within-
day electricity use activities and the economic value that it can create.  

First, it directly compared the behaviour of those receiving every day versus less frequent incentives. Every day 
incentives, where customers are encouraged to concentrate more usage into low-cost times of day, may 
create value through lower average costs to service these customers. Ad hoc incentives can target high value 
days and provide demand response, where events (and thus usage) are flexible and driven by prevailing 
wholesale costs in the market. Understanding the responsiveness and habit-formation characteristics of 
households to routine versus ad hoc events is a crucial input to developing business cases and assessing the 
economic value that can be created by implementing both demand response and time-of-use programs and 
tariffs.  

Second, the experimental design provided insights into the sensitivity of load shifting responses to incentive 
design. Do households respond more to solar sponge subsidies that incentivise increased consumption in the 
middle of the day? Or to peak shave rebates that encourage reduced consumption in the evening? And if 
households respond, to what extent do we observe spill-over benefits from load shifting over the daily 
consumption profile? For example, does evening electricity use decrease for households that receive middle-
of-day solar sponge incentives?  

Another important aspect of the experimental design was related to the size of the incentives offered. Is it 
possible to achieve load shifting by offering non-monetary incentives? Or is load shifting financially motivated? 
If the latter, are incentives that are in line with average price differentials between middle of the day and 
evening wholesale prices sufficiently high to encourage load shifting? If higher incentives are needed for 
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households to engage in load shifting, then routine incentives may not create enough value to be commercially 
viable.   

Lastly, given the diversity of electricity consumers it was important to understand how responses vary with 
household characteristics to effectively target any new program or tariff. The trial participants are equally split 
in terms of the number of homes with and without roof top solar installations and consequently we were able 
to provide novel insights into how these two customer groups respond to the same incentive programs 
offered. Further insights into the building form, that is free standing house through to multistorey apartments 
was not possible from the available data set. 

Methodology 

The Load-shifting Challenge was implemented as a randomised controlled trial in order to test how 
households respond to incentives that encourage more daytime electricity use (when the costs of generating 
energy are generally lower) and less evening electricity use (when the costs of generating energy are generally 
significantly higher). The trial participants were Powerpal users in Victoria, Australia. Powerpal is a technology 
provider whose customers receive a) real-time visualisations of their electricity use via a smartphone app when 
within Bluetooth range of their smart meter, and b) weekly energy usage reports and tips. During the trial, 
Powerpal users received notifications incentivising them to alter their energy use and enabling them to track 
their performance relative to some target usage during and after these events.  

The 6,005 participants in the trial were randomly assigned into either a control group or one of eight 
treatment groups. The eight different incentive structures are defined by various combinations of 3 
characteristics comprised of 1) whether rewards are earned by using more in the daytime (12 pm-3 pm) or less 
in the evening (5 pm-8 pm), 2) the size of the reward (non-monetary, 5c/kWh, 10c/kWh, 50c/kWh), and 3) the 
frequency of the events (every day; approximately every 3 days; approximately every 2 weeks). 

Treatment impact was estimated by comparing load profiles (the average hourly electricity use pattern) 
between each treatment group and the control during the trial window. Statistical tests showed that the load 
profiles of all groups prior to the trial were indistinguishable from each other, thereby confirming successful 
randomisation. Analyses on the effect of household characteristics examined whether the responses to the 
treatments differed between households with and without solar panels, and leveraged self-reported survey 
data on load-shifting techniques and trial experiences to provide insights into whether these factors varied 
across household characteristics and treatment allocation.  

Findings 

Routine vs ad hoc programs 

The results of the Load-shifting Challenge demonstrate that simple and small incentives can change aggregate 
consumption profiles among trial participants independent of being offered every day or on an ad hoc basis. 
As ad hoc incentives changed consumption profiles on event days, this demonstrates the potential for these 
incentives to generate flexible demand response. 

The observed responses to routine incentives suggest that time-of-use-style tariffs can change load shapes and 
lower the average cost of supplying households. This demonstrates the potential for a retailer-customer 
surplus if customers move from time-invariant fixed rates to time-of-use fixed rates. However, these tariffs do 
not provide demand response because they do not promote flexibility with respect to real-time conditions. In 
contrast, ad hoc events can be called when market or network conditions are such that changing load profiles 
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is forecast to be particularly valuable on specific days. These results demonstrate meaningful consumption 
responses can be generated by households on ad hoc event days, and of similar size to responses generated by 
households that receive every day incentives.  

Solar and non-solar households 

Non-solar households were more sensitive to incentive design than solar households, changing their pattern of 
electricity use in response to some, but not all program designs. In contrast solar households responded to all 
program designs. 

For example, non-solar households did not respond to every day monetary or non-monetary peak shave 
incentives. Solar households, in contrast, responded to either form of incentive (decreasing their peak usage 
by 9%), demonstrating no obvious sensitivity between being paid nothing or 5c/kWh to shave their peak 
consumption. 

Non-solar households did, however, respond to monetary incentives where they were paid to use more energy 
in the middle of the day (solar sponge incentives). Specifically, they increased their energy during the middle-
of-day incentive window by an average of 6% and interestingly, also decreased energy consumption during the 
evening peak by an average of 8% despite not receiving a direct incentive to do so. This change in the 
consumption profile is shown in Figure E-1, where the black line is the control group’s average consumption 
profile and the red line the average consumption profile of households receiving the solar sponge incentive. 
Notice the change in trajectory of usage at midday, and also the reduction in energy use in the evening. This 
increase in low-cost middle-of-the-day electricity use and the accompanying decrease in high-cost evening use 
is an encouraging result for policy-makers and retailers that aim to reduce the average cost of energy for these 
customers. 

 

 
Figure E-1: Average treatment effects for routine, solar sponge, 5c/kWh incentives: Non-solar users; details for figure are described in 
Sections 7 and 8 

Finally, non-solar households were found to respond to peak shave incentives only when the reward was 
substantial (50c/kWh). In short, non-solar households engaged with and responded to some but not all load 
shifting treatments, highlighting that careful incentive design and targeting can improve program benefits. 
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Value creation 

Participant consumption profiles were impacted by many of the treatments trialled, and the results showed 
that under certain wholesale price conditions these treatments could generate financial benefit for both 
households and retailers. Under prevailing wholesale market conditions, and despite the short duration of the 
trial, some treatments decreased wholesale procurement costs, providing a simple demonstration of the 
potential for financial benefit. For example, it was estimated that wholesale procurement costs for non-solar 
households that received every day solar sponge incentives were $29 (9%) lower than for the control group 
over 90 days, or $22 (7%) lower when including the program payments to these households. 
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Glossary 
 

AEMO  Australian Electricity Market Operator 

CP  Critical Peak 

DELWP Department of Environment, Land, Water and Planning (Now Department of  

 Energy Environment & Action) 

DNSP Distribution and Network Service Provider 

DR  Demand Response 

GW    Gigawatt 

kWh    Kilowatt-hour 

MW    Megawatt 

MWh    Megawatt-hour 

Program  Programs or trials that attempt to shift electricity consumption using incentives 

Project The Load-shifting Challenge project from funding to information dissemination 
stage 

PV    Photovoltaic 

RCT    Randomised controlled trial 

ToU    Time of Use 

Treatment   A specific incentive design that was tested in the trial 

Treatment group   A group of trial participants who are randomly assigned to a treatment 

Trial Time period when Load-shifting Challenge participants were actively treated  

W    Watt 

Wh    Watt-hour 

 



 Incentivising within-day shifting of household electricity use 8 

 

Contents 
EXECUTIVE SUMMARY ____________________________________________________________ 3 
Methodology _____________________________________________________________________________________ 4 
Findings _________________________________________________________________________________________ 4 

GLOSSARY _____________________________________________________________________ 7 

1 INTRODUCTION ____________________________________________________________ 9 

2 PROJECT SCOPE ____________________________________________________________ 11 
2.1 Project aims ________________________________________________________________________________ 11 
2.2 Project partners ____________________________________________________________________________ 12 
2.3 Project outputs _____________________________________________________________________________ 12 

3 RELATED LITERATURE ________________________________________________________ 13 
3.1 Dynamic electricity pricing ___________________________________________________________________ 13 
3.2 Habituation and habit formation ______________________________________________________________ 15 
3.3 The Australian context ______________________________________________________________________ 16 

4 EXPERIMENTAL DESIGN ______________________________________________________ 19 
4.1 Treatment groups __________________________________________________________________________ 19 
4.2 Recruitment and treatment randomisation ____________________________________________________ 20 
4.3 Within-app experience _______________________________________________________________________ 21 

5 DATA, RECRUITMENT AND EVENTS _____________________________________________ 23 
5.1 Recruitment outcomes _____________________________________________________________________ 23 
5.2 Events ____________________________________________________________________________________ 24 
5.3 Experimental payments _____________________________________________________________________ 26 

6 EMPIRICAL STRATEGY _______________________________________________________ 27 
6.1 Randomisation _____________________________________________________________________________ 29 

7 RESULTS _________________________________________________________________ 30 
7.1 Treatment effects on household electricity use ________________________________________________ 30 
7.2 Electricity costs ____________________________________________________________________________ 36 
7.3 Survey insights _____________________________________________________________________________ 38 

8 RECOMMENDATIONS FOR NEXT STEPS __________________________________________ 42 

9 CONCLUSIONS ____________________________________________________________ 43 

REFERENCES __________________________________________________________________ 45 

APPENDIX A: GENERAL LOAD-SHIFTING CHALLENGE INVITATION AND WELCOME EMAIL TO THE NON-
MONETARY PEAK SHAVE GROUP ____________________________________________________ 47 

APPENDIX B: SCREENSHOTS OF WITHIN-APP EXPERIENCE FOR SOLAR SPONGE AND NON-MONETARY 
GROUPS ______________________________________________________________________ 48 

APPENDIX C: SCREENSHOT OF WITHIN-APP LOAD SHIFTING TIPS ___________________________ 49 



 Incentivising within-day shifting of household electricity use 9 

 

1 Introduction 
Solar PV systems are an integral part of Australia’s energy transition. Since 2010, both small-scale rooftop and 
larger commercial and utility-scale installations have grown rapidly in number and size. Figures from March 
2023 show that Australia is amongst the world leaders in solar penetration, totalling over 3.44 million PV 
installations country-wide with a combined capacity of over 30.5 GW (Australian PV Institute 2023, https://pv-
map.apvi.org.au/analyses). 

The boom in solar installations is accompanied by two wholesale price trends in the national electricity market. 
On the one hand prices continue to fall during daytime hours, while on the other, prices are increasing in the 
evening. These trends reflect falling costs of generation in the middle of the day when output from our solar 
resources is high, but increasing costs of generation in the evening, when PV systems cease generating and this 
reduction in electricity generating must be met by wind, gas-fired or other higher-cost generators to cover 
evening peak demand. 

At the same time, the renewable energy transition leaves some parts of the electricity network more 
vulnerable to day-to-day instabilities. The Australian Energy Market Operator (AEMO) and distribution and 
network service providers (DNSPs) already view low minimum demand (that is, total electricity use less the 
amounts generated by roof top solar) levels in the middle of the day as an operational issue that is projected 
to become increasingly problematic in the near future (AEMO, 2022).  

Another implication of the increased share of renewables in the energy mix is that their intermittency causes 
energy supply and, in the case of rooftop solar, net energy demand, to become more volatile and difficult to 
predict. This increases the value of solutions that can support flexible responses to ameliorate this volatility. 
For example, households supplying less/using more energy when renewable output is unexpectedly high can 
help balance network supply and demand. 

The price differential between daytime and evening peak prices creates value opportunities for electricity 
users to shift more consumption to the sunny daytime and away from times when the sun has set. Figure 1-1 
documents how average wholesale prices have changed in our setting (Victoria, Australia) from 2015-2020, 
aligning with a boom in new rooftop solar installations of 0.3 GW in 2015-16, 1 GW in 2017-18 and 1.9 GW in 
2019-20. The difference in average midday to early-evening prices has increased from roughly $25/MWh in 
2015-16 to $40 in 2017-2018 to $100 in 2019-20. Although stark, this figure does not depict the increase in 
volatility and understates the value to be gained by targeting days with very high price differentials compared 
with every day programs that also cover days when price differentials are zero or even negative. For example, 
in 2019-20, load shifted from 6pm to midday would have created 17c/kWh for the top 25% days in terms of 
price differential, 34c/kWh for the top 5% of days, and 200c/kWh for the top 1% of days. 
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Figure 1-1: Average Victorian wholesale electricity price by half-hour of day (Normalised by hour 0, 2015-16) 

 

At scale, within-day shifting of household electricity use leads to an increase in market demand in the middle of 
the day and less demand in the evening. Beyond the clear economic value that can result from such actions by 
lowering the costs of supply, there may also be impacts on carbon emissions. Additionally, within-day shifting 
may also contribute to grid stability if it alleviates voltage control issues in the distribution network derived 
from low levels of minimum demand and subsequently high levels of solar feed-ins.  

However, there are challenges to unlocking this value, with few real-world examples to demonstrate to either 
retailers or households that they can benefit from offering or facing tariffs designed to encourage load 
shifting. What will it take to engage households with so-called solar sponge tariffs to meaningfully shift their 
timing of energy use, and can it be demonstrated to electricity providers that such tariffs are worthwhile?  

An obvious barrier to households engaging in load shifting is the absence of financial incentives under the 
fixed-rate tariffs that most face.1 Under a fixed-rate tariff, even if households are willing to shift consumption 
from the evening to the daytime, the value of doing so is captured solely by their retailer. Although time-of-use 
tariffs might create value by shifting average consumption profiles, they cannot provide true demand response 
to changing market conditions as they arise because consumers are not exposed to real-time price signals. 
Hence, it is important to distinguish between the potential barriers to engaging households on both time-of-
use programs and ad hoc programs that can provide demand response. 

On the flipside, energy retailers are perhaps slow to offer these programs due to insufficient evidence that 
customers are willing to engage with time-varying prices designed to encourage within-day consumption 
shifting. Further, even if customers do engage, do their resulting actions generate a sufficient financial benefit 
that can be shared between the retailer and customer? 

In a randomised controlled trial (RCT) with over 6,000 Victorian households, this research investigated two 
central questions: 1) Are households able and willing to engage in within-day load shifting if incentivised to do 
so, and 2) Which tariff designs are the most effective?  

 

 
1 87% of metered household loads are reported to face a tariff with no time-of-use characteristics in (CME, 2017). 
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2 Project Scope 

2.1 Project aims 

The objective of this project was to design and test monetary and non-monetary incentives to encourage 
households to shift their within-day electricity use to align with solar energy output. In particular, the aim was 
to quantify the impact that different incentive designs have on household load shifting, energy procurement 
costs, and net program costs. Trial incentives varied across three dimensions. The first dimension related to 
the action that is targeted by the incentive, with households being rewarded either for moving consumption 
into daylight hours (solar sponge incentives) or for moving consumption away from non-daylight hours (peak 
shave incentives). Secondly, incentives varied in their intensity with rebates and subsidies ranging from 5c to 
50c per kWh shifted as well as a non-monetary incentive scheme whereby households earnt status points per 
kWh shifted. The third dimension related to the frequency of actions targeted, with some trial participants 
being incentivised daily to encourage routine actions while others were offered incentives on an ad hoc basis. 
In total eight different incentive schemes were designed and tested in a RCT comprised of eight treatment 
groups (treatments) and a control group. 

The experimental design allowed for insight into three crucial features on the ability to engage households to 
alter their within-day electricity use activities and the economic value that it can create.  

First, it directly compared the behaviour of those receiving every day versus less frequent incentives. Daily 
incentives, where customers are encouraged to concentrate more usage into low-cost times of day, may 
create value through lower average costs to service these customers. Ad hoc incentives can target high-value 
days and provide demand response where events (and thus usage) are flexible and driven by prevailing 
wholesale costs in the market. Understanding the responsiveness and habit-formation characteristics of 
households to routine versus ad hoc events is crucial to developing business cases and assessing the economic 
value that can be created by implementing both demand response and time-of-use programs and tariffs.  

Second, the experimental design provided insights into the sensitivity of load-shifting responses to different 
incentives. Do households respond more to solar sponge subsidies that incentivise increased consumption in 
the middle of the day or to peak shave rebates that encourage reduced consumption in the evening? And if 
households respond, to what extent do we observe spill-over benefits from load shifting over the daily 
consumption profile? For example, does evening electricity use decrease for households that receive middle-
of-day solar sponge incentives?  

Another important aspect of incentive design relates to the size of the incentives offered: Is it possible to 
achieve load shifting by offering non-monetary incentives or is load shifting financially motivated? If the latter, 
are incentives that are in line with average price differentials between middle-of-the-day and evening wholesale 
prices sufficiently high to encourage load shifting? If higher incentives are needed for households to engage in 
load shifting, then routine programs may not create enough value to be commercially viable.   

Finally, the trial participants in almost equal numbers have homes with and without rooftop solar installations 
and consequently we were able to provide novel insights into how these two customer groups respond to the 
same incentive programs offered. Examining how responses vary across key household characteristics can help 
effectively target any new program or tariff. 
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2.2 Project partners 

Powerpal: Powerpal is a technology provider offering a mobile app and supporting low-cost hardware that 
allows real-time energy data to be collected from existing digital energy meter assets. In the State of Victoria 
(our research setting), all households have “smart” interval meters, and those choosing to install Powerpal’s 
device can do so free of charge because they are fully subsidised under the Victorian Government’s energy 
upgrades scheme. Powerpal’s app provides data visualisations of the households’ energy use and allows 
customers to wirelessly track how much energy the home is using in real-time. The company also provides 
weekly consumption reports and customised tips and guidance to its 100,000+ customers.  Powerpal designed 
new app interfaces for each of the treatment groups and managed the invitation, recruitment, trial phase, exit 
survey, data collection and incentive payments to the trial participants through the Powerpal app. Powerpal 
provided hourly interval net electricity-consumption data from participating households in anonymised form. 

DELWP: The Victorian Department of Environment, Land, Water and Planning participated in the Industry 
Reference Group and provided feedback on the proposed research and outcomes from a public policy point 
of view. As of May 20323, now known as the Department of Energy, Environment & Climate Action. 

2.3 Project outputs 

The research project resulted in a number of tangible outputs.  

Output 1: This final report, containing an analysis of the trial, documenting the impacts each load-shifting 
incentive has on within-day shifting of electricity use and the energy cost implications for retailers, both in 
terms of electricity procurement costs and program costs. In particular, electricity use prior to and during the 
event windows are analysed, as is any evidence of habitual effects during the trials.  

Output 2: Two presentations to the industry reference group followed by feedback and discussion in a 
workshop format. The first workshop was held at the beginning of the trials and was used to introduce the 
project and seek the IRG’s input into the exit survey. The second workshop was held after the end of the trials 
and before submitting the final draft report and served to present and receive feedback on the preliminary 
outcomes and findings of the load-shifting trial. The industry reference group comprised of individuals from 
Endeavour Energy, AusNet, Jemena, Network of Illawarra Consumers of Energy, DEECA (Victoria), Ausgrid, and 
NSW DPE (now Office of Energy & Climate Change). 

Output 3: Work is currently underway to prepare manuscripts of this research for publication in peer reviewed 
economic journals and for presentation at academic conferences and workshops. 
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3 Related Literature 
This project leveraged insights from and contributes to the literature on dynamic electricity pricing, 
habituation and habit formation, and demand response studies undertaken in Australia and overseas. Our 
experimental design is detailed in Section 4, but where appropriate, we describe in this section how the 
features of our study differ from key studies in the literature. 

3.1 Dynamic electricity pricing  

3.1.1 Evidence on price sensitivity of electricity demand 

Since the early 2000s, overseas energy retailers have been experimenting with time-varying tariffs to test 
whether electricity consumers respond to price incentives by reducing their consumption during peak times. 
Time-varying pricing schemes broadly fall into three categories:  

i) time-of-use (ToU) pricing, where the price of electricity changes consistently at set times of the 
day (for example during peak and off-peak periods),  

ii) real-time pricing schemes that allow retail prices to vary with the wholesale electricity price at 
hourly or shorter intervals, and 

iii) critical peak (CP) pricing, whereby large jumps in the price of electricity are used infrequently to 
incentivise reduced energy consumption during periods of critical peak demand.  

To date, most time-varying pricing trials fall within the ToU and CP pricing categories. Assessing the 
outcomes of 15 of the earliest pricing studies in the U.S., Faruqui and Sergici (2010) reported that participants 
in these studies exhibited price elasticities of daily energy demand of between -0.02 and -0.10 and had on-
peak/off-peak substitution elasticities ranging from 0.07 to 0.40. Greater demand responses are observed if 
the home has central air conditioning and/or was provided with enabling technologies. 

A review of 32 European dynamic pricing schemes provided further evidence that electricity demand is price 
elastic in a wide variety of settings (Kessels et al., 2016). A qualitative comparison across different schemes 
reveals that, in the absence of automation, offering simple and predictable schemes is important in the case 
of ToU tariffs and timely announcements matter in the case of CP pricing. Overall, while larger price spreads 
were found to result in larger consumption shifts, the current evidence suggests that large price differentials 
are not essential to achieving consistent, albeit smaller, shifts in electricity consumption.  

The results from RCTs examining demand response are roughly in line with empirical estimates of a short run 
price elasticity of electricity demand of around -0.1 (Allcott, 2011; Faruqui & Sergici, 2010; Jessoe & Rapson, 
2014; Wolak, 2011). Interestingly, large and persistent changes in electricity prices have been shown to result in 
demand becoming more elastic over time, with one study estimating the price elasticity of demand at -0.27 
two years after the price change, compared with an elasticity of -0.09 six months after the change (Deryugina, 
MacKay, & Reif, 2020).  

Combining the existing evidence on the price elasticity of electricity demand with the requirement that the 
incentive design be commercially viable, four levels of financial incentives were compared in the Load-shifting 
Challenge, with marginal incentives corresponding to 0c/kWh, 5c/kWh, 10c/kWh and 50c/kWh. Meaningful load 
shifting was observed in response to these comparatively low levels of financial incentives offered. However, 
these responses were quantitatively similar across treatments, with price elasticity only weakly observable 
amongst non-solar customers. 
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The reporting of aggregate results masks important heterogeneity in the consumption response to time-
varying pricing. Firstly, the responsiveness of households to varying prices depends on their characteristics: 
Larger consumption effects are observed for high-use households and those with smart technologies, while 
low-income households tend to save proportionally more on their electricity bill (Herter, 2007; Wolak, 2010). 
Besides leveraging ordinary household characteristics, the Load-shifting Challenge was able to provide novel 
insights into how the responses differ across households with and without rooftop solar installations.  

Secondly, the design of the pricing scheme was found to matter. For example, comparing hourly pricing, CP 
pricing and critical peak rebates within a pricing experiment in the U.S. District of Columbia revealed that, for 
the same price increase, hourly real-time pricing results in comparable reductions in electricity consumption 
than during peak periods in CP pricing. In contrast, comparable peak rebates elicit a significantly smaller 
response (Wolak, 2007, 2010). Also, monetary incentives have been shown to work better when combined 
with information treatments. In an RCT designed to test the effect of the frequency of providing information 
on residential electricity usage, Jessoe and Rapson (2014) found that informed households were three 
standard deviations more responsive to temporary price increases than uninformed households.  

In the Load-shifting Challenge, both solar and non-solar households responded to ad hoc and routine 
incentives. However, non-solar households responded more strongly to solar sponge incentives, while only 
solar households responded consistently to peak shave incentives.  

When implemented on their own, non-monetary interventions that provide information or use moral suasion 
have been found to be less effective than financial incentives (Burkhardt, Gillingham, & Kopalle, 2019; Ito, Ida, & 
Tanaka, 2018). For example, Burkhardt et al. (2019) randomly assigned households to peak-pricing and non-
monetary incentives, including information interventions and conservation appeals during peak load events. 
While their financially incentivised treatment groups consumed on average 14% less electricity, they found only 
a minimal consumption response in the non-monetary treatments.  

Another example of a non-monetary intervention is the Opower Home Energy Report, whereby thousands of 
randomly selected households received information on the previous months’ electricity consumption and how 
this consumption compared to that of their neighbours. Households have been found to reduce their 
electricity consumption by around 1%-2% after receiving the home energy report (Allcott & Rogers, 2014; 
Brandon, List, Metcalfe, Price, & Rundhammer, 2019). When such social nudges are combined with targeted 
appeals during peak load events the effect has been much higher, resulting in up to 7% reduction in electricity 
use (Brandon et al., 2019). 

The Load-shifting Challenge provided novel insights into the effectiveness of real-time feedback provided in 
conjunction with monetary or non-monetary incentives. The Challenge featured real-time feedback via the 
Powerpal app about the household’s electricity consumption relative to the household’s baseline, as well as the 
amount of financial incentives or non-monetary stars earnt as the event progressed and cumulatively over all 
events to date. 

3.1.2 Evidence on load shifting  

The increased uptake in renewables has had profound impacts on the daily profile of net market demand for 
electricity. The duck curve is a well-documented phenomenon whereby the abundance of solar energy creates 
a net demand trough and results in low electricity prices during the middle of the day. The trough is followed 
by a steep ramp up in electricity demand from the grid that is reflected in higher prices in the evening, when 
intermittent renewable sources of energy are replaced by dispatchable (often gas-fired) generators (Bushnell 
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& Novan, 2021; Jha & Leslie, 2021). This development reaffirms the benefits that dynamic pricing incentives 
might unlock, not only to reduce peak demand but also for alleviating network problems associated with low 
demand. While early studies typically do not observe increased demand outside of the peak price periods 
(Allcott, 2011; Wolak, 2007), more recent studies have added off-peak incentives designed to stimulate off-
peak demand. For example, offering electricity at 25% of the normal rate at night, when wind generation is 
high, results in similar responses in absolute terms compared to raising the price five to six times the normal 
rate during critical peaks in one context (Burkhardt et al., 2019). In a study that focused specifically on the 
comparison of incentives provided to shift electricity into event windows with those that incentivise shifting 
consumption away from event windows, Andersen, Hansen, Jensen, and Wolak (2021), observed consumption 
shifts that were 2-3x greater for the Into treatments as compared with the Away treatments. In addition, Into 
treatments resulted in reduced demand before and after the event window, suggesting that incentives to 
increase consumption during periods of low demand may also benefit the grid during periods of high demand. 
Andersen et al. (2021) also found that comparatively small incentives of 5%, 20% and 50% rebates are 
sufficient to create value for consumers and retailers in Denmark.  

The Load-shifting Challenge also tested the effectiveness of providing incentives to increase consumption 
versus incentives to reduce consumption during certain times of the day. Unlike Andersen et al. (2021), the 
Challenge focused on two specific time windows: a solar sponge window in the middle of the day and a peak 
shave window in the early evening. This design enabled more precise estimates of the effects of solar sponge 
and peak shave incentives on demand during the time window that is not directly targeted. In particular, it was 
observed that incentivising more electricity use during the middle of the day resulted in reduced use in the 
evening, while incentivising reduced energy use in the evening did not result in increased use during the day. In 
addition, the Challenge differs from Andersen et al. (2021) in that load shifts are compared to a true control 
group consisting of Powerpal customers who signed up for the Challenge but were not accepted to take part 
in the trial and never received any guidance or incentives to load shift.2 This design feature meant that we 
could investigate short-term habit formation in ad hoc groups by comparing their electricity use on non-event 
days to that of our control. 

3.2 Habituation and habit formation 

As interventions were repeated, an interesting question arose: Does repetition desensitise the recipient, 
resulting in the effect of the intervention wearing off over time (Thompson and Spencer 1966), or does it help 
the formation of new consumption habits that have lasting effects even after the intervention is discontinued 
(Becker & Murphy, 1988; Stigler & Becker, 1977)?  

There is strong evidence of persistence in relation to electricity consumption. For example, Costa and Gerard 
(2021) studied the long-term effects of an energy conservation policy that was implemented in affected areas 
during a period of drastic supply shortage in Brazil. The 9-month policy introduced consumption quotas and 
additional financial incentives to encourage consumption below the quota, resulting in a 23% reduction in 
electricity consumption on average. About half of this effect remained twelve years after the policy ended.  

Similarly, the energy conservation effects of the Opower Home Energy Reports exhibit persistence. Allcott and 
Rogers (2014) found that consumers are slow to habituate to the receipt of new reports, resulting in 
significant action followed a period of backsliding where recipients revert to their previous consumption 

 
2 In Andersen et al. (2021), the timing of load-shifting events is randomised across trial participants, with the control group for any 
particular event being made up of participants who were not notified of that event. 
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habits. While these cycles weaken over time, they do not disappear completely, even after five years of 
receiving the monthly reports. Once the reports are discontinued, the energy conservation effect decays at a 
rate of 10%-20% per year. In contrast, Ito et al. (2018) found that households desensitise quickly to repeated 
moral suasion interventions to reduce energy consumption during peak demand hours, but that the original 
treatment effect can be restored after a sufficiently long break between interventions. Repeated financial 
incentives in the same experiment, on the other hand, result in continued energy conservation even after the 
incentives are discontinued. 

Persistent conservation has been observed in relation to household energy as well as water consumption, 
raising the question whether habit formation or technology adoption is responsible for this persistence. 
Brandon et al. (2022) analyse the energy consumption of households that moved into homes where the 
previous occupants received Opower Home Energy Reports. They find that, after the change in occupants, just 
over half of the long-term reduction in energy use attributable to the receipt of the home energy report 
remains in the home, despite the new occupants not receiving the report. Based on this finding, Brandon et al. 
(2022) concluded that technology adoption, including fixed energy efficient investments, are the primary 
channel through which the Opower report achieves persistent energy conservation outcomes. A number of 
other studies that investigate the same question favour habit formation as being key to persistent reductions 
in electricity consumption (Allcott & Rogers, 2014; Costa & Gerard, 2021; Ito et al., 2018).  

If these interventions do change consumption habits, what is the mechanism by which this is achieved? 
Building on the economic (Becker & Murphy, 1988; Stigler & Becker, 1977) and neuropsychological literature 
(Anderson, 2016; Anderson, Laurent, & Yantis, 2011), Byrne et al. (2021) devised an experiment to disentangle a 
consumption-based mechanism from an attention-based mechanism. The consumption-based mechanism due 
to Becker (1977) describes habit formation as a process where changes in consumption over time are 
becoming ingrained as consumption habits. In contrast, the attention-based model attributes the benefit of 
repeated interventions to providing recurring cues to paying attention to resource use, which results in the 
formation of an attention-paying habit. The experiment involved a shower device that is pre-programmed to 
provide real-time feedback on shower water use at varying intervals over six weeks. Consistent with the 
predictions of an attention-habit model, they found that this feedback resulted in an immediate and stable 
change in behaviour that eroded gradually as the feedback was turned off.  

By investigating consumption on non-event days across routine and ad hoc treatment groups in the Load-
shifting Challenge, this research was able to provide novel insights on the relative effectiveness of offering real-
time information on resource use (i.e. an attention-based mechanism) in conjunction with either monetary or 
non-monetary incentives that are repeated continuously versus in an ad hoc way in creating persistent load 
shifting habits.  

3.3 The Australian context 

Against a backdrop of high rooftop solar penetration and frequent occurrences of high evening wholesale 
prices, there is significant interest in reducing peak demand in the Australian market. At the same time, few 
Australian households have opted into retail contracts featuring time-varying prices and therefore receive no 
direct price signal to help them align their electricity consumption with prevailing market conditions. Retailers 
and network companies have responded by trialling demand-response programs that are focused on reducing 
peak demand by offering a variety of monetary and non-monetary incentives to households. These programs 
mostly target demand during critical peaks, using ad hoc day-ahead and hour-ahead messaging. The RACE for 
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2030 Opportunity Assessment: Rewarding flexible demand (Roberts et al., 2021) provides an overview of these 
programs that is summarised and reproduced here in Table 3-1 below. 

The financial incentives offered in the Australian demand-response programs typically entail a participation 
payment and/or payments that are tied to the household’s demand response relative to an estimated 
consumption baseline.3 Some programs feature information treatments or moral suasion in conjunction with 
monetary incentives, while one program relies solely on non-monetary incentives. In general, trial participants 
report to be more attracted to financial rewards than non-monetary incentives. That said, many participants 
consider the value of the incentives offered in these programs to be insignificant and cite non-financial 
motives for their participation. Despite participants perceiving the incentives offered as low level, the value of 
demand response delivered often fails to cover the cost of the monetary incentives. 

Most trials report consumption responses to their various incentive designs, with households reported to 
reduce their electricity consumption during peak demand windows by between 0.24 and 0.90kW on average, 
with high heterogeneity observed across households. Trials with near real-time feedback and variable 
incentives generally report greater achieved demand response. The trials also find tentative evidence of limited 
load shifting with increased consumption outside of event windows observed in some trials.  

The Opportunity Assessment Rewarding flexible demand (Roberts et al., 2021) identifies several priority 
research areas that are relevant in the context of the Load-shifting Challenge. In particular, it identifies a need 
for more research into how households understand their own electricity consumption, and how this 
understanding is impacted by having access to real-time energy feedback and by their participation in demand- 
response programs and trials. The report also identifies the need to be able to differentiate consumption 
decisions for households that comprise of consumers only from those that also produce electricity 
(prosumers). Finally, the report also recommends investigating mechanisms that can increase midday demand 
and their value.  

The Load-shifting Challenge comprised several novel features in the Australian context. 

Firstly, participants in the Load-shifting Challenge could monitor their electricity consumption in real-time via 
the Powerpal app. The app’s functionality was augmented for the trial to allow participants to track their 
consumption and reward earning to date and for each event against their personalised baseline.  

Secondly, the Load-shifting Challenge incentivised consumption shifts into the middle of the day as well as 
away from early evening peaks, thereby addressing not only the need to manage evening peak demands but 
also the increasing concerns around demand troughs in the middle of the day. Importantly, the experimental 
design enabled the systematic comparison of solar sponge and peak shave incentives in terms of their impact 
on consumption during the event window, as well as any load shifting that occurs before or after the event.  

Thirdly, the participants in the Load-shifting Challenge were almost evenly split into solar and non-solar 
households enabling unique insights into how these two customer segments respond to different incentive 
designs.  

Finally, in addition to understanding demand response to rare critical-peak incentives, a key objective of the 
Load-shifting Challenge was to examine the potential to achieve changes in consumption habits that result in 

 
3 Payments under the latter category consist of target-based bonuses and rebates of between $1.50 to $5.00 per kWh of reduced 
consumption or a combination thereof. 
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increased demand in the middle of the day and lower evening peaks every day. To this end, different 
mechanisms to motivate the formation of such habits were tested and compared.  

Table 3-1: Summary of demand response trials and programs in Australia. Source: Roberts et al. (2021) 
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4 Experimental Design 
The Load-shifting Challenge was designed to inform three key questions regarding demand-response 
programs that aim to achieve within-day load shifting. These empirical questions (Q) were: 

Q1 Are households more responsive to incentives that encourage load shifting by subsidising daytime 
electricity use (solar sponges) or by rewarding reductions in evening electricity use (peak shavers)? 

Q2 Are households more responsive to every day (routine) incentives or targeted (ad hoc) incentives? 
Q3 How does household responsiveness vary with the size and type* of incentives? (* monetary and non-

monetary) 

Moreover, the Load-shifting Challenge examined the economic consequences of the answers to Q1-3.  For 
example, can a financial surplus be generated from these responses, assuming particular daytime and evening 
price realisations?  

We used an RCT experimental design to allow for direct tests of the above questions. The experimental 
treatment groups are described in this section, followed by the design of the recruitment process and the 
within-app experience. The next section reports the recruitment outcomes and experimental payouts, with the 
subsequent section reporting the results from our trial. 

4.1 Treatment groups 

There were eight treatment groups in the trial. The following features [F] define these treatment groups. 

F1 Incentive window 

“Into” vs “Away”: Groups that have solar sponge incentives that subsidise daytime use between the hours of 
12 noon and 3 pm were classed as “Into”. Groups that have peak shave incentives that reward reductions in 
evening use between the hours of 5 pm and 8 pm were classed as “Away” because they encourage moving 
energy into and away from these time periods, respectively. 

F2 Incentive frequency 

“Routine” vs “Ad hoc”: Groups that received daily incentivised events were classified as “Routine”. Groups that 
had less-than-daily events were classified as “Ad hoc.” 

F3 Incentive magnitude 

The Load-shifting Challenge tested four level of incentives: 5c/kWh, 10c/kWh, 50c/kWh and a non-monetary 
incentive. For the “Into” groups, participants received a payment for every kWh used during an event window. 
For the “Away” groups, participants received a payment for every kWh they use below a personalised baseline 
in an event window.4 The non-monetary groups received either 0, 1, 2 or 3 stars. These stars had no monetary 
value, with no stars awarded if the personalised baseline was exceeded, 1 star for consumption below the 

 
4 Raw baselines were each household’s 90th percentile of daily usage between the hours of 5 pm-8 pm from 1 December 2021 through to 
14 March 2022. Final baselines were assigned by rounding the raw baselines up to the nearest decile of household raw baselines. The 
exception was households in the 90th to 99th percentile, which were assigned the 95th percentile value for program budget reasons. We 
note that most households have peak demand in these summer months, so the baselines were expected to almost always exceed actual 
consumption during the trial, providing participants in peak shave incentive groups nearly always with a positive opportunity cost from 
using more energy equal to the incentive magnitude.  
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baseline, 2 stars for consumption below 50% of the baseline, and 3 stars for consumption below 75% of the 
baseline. 

The eight treatment groups [G], defined by their values of the three features (F1 + F2 + F3), were: 

G0 Control group (received no treatment - the control group was informed that they were not selected 
for the Load-shifting Challenge trial) 

G1 Away + Routine + 5c/kWh 
G2 Away + Ad hoc + 5c/kWh 
G3 Away + Ad hoc + 10c/kWh 
G4 Away + Ad hoc + 50c/kWh 
G5 Into + Routine + 5c/kWh 
G6 Into + Ad hoc + 5c/kWh 
G7 Into + Ad hoc + 10c/kWh 
G8 Away + Routine + Non-monetary 

Comparing the consumption patterns of the different treatment groups with the control group G0 was 
necessary to identify the average treatment effect for each program, while the comparison across treatment 
groups spoke to the three empirical questions outlined at the start of this section. For example, comparing G1 
to G5, G2 to G6, and G3 to G7 informed Q1 on the load-shifting and subsequent procurement cost impacts of 
solar sponge program designs relative to comparable peak shave program designs. Comparing G1 to G2, and 
G5 to G6 informed Q2 on the load-shifting and subsequent procurement cost impacts to daily routine events 
versus targeted ad hoc events. Finally, comparing G1 to G8, G6 to G7, and G2 to G3 and G4 informed Q3 on 
how the magnitude of the incentive impacts load shifting and subsequent procurement cost impacts. 

4.2 Recruitment and treatment randomisation 

The RCT enabled a causal interpretation of the impacts the different program design features had on the 
consumption profiles of the participants in the Load-shifting Challenge. The recruitment process began with 
an invitation sent via an app notification and an email to each of Powerpal’s 57,979 Victorian customers that 
had at least 3 months of tenure at the time of the invitation. These users were invited to participate in a 
challenge that could see them earn up to $50 without giving details regarding the program design and what 
actions will result in earning rewards.5 These invitations are documented in Appendix A.  

Once registrations closed, we randomly allocated each participant to one of the eight treatment groups or the 
control group. Those allocated to the control group were not given any further details on the trial and were 
thanked for their interest by receiving $5. Participants allocated to a treatment group received welcome emails 
announcing the start date of the program, the functionality of the event page in the app and tips for how to 
earn rewards. The only content differences across the groups reflected the incentive design features—the 
incentive window, frequency and magnitude—that define each treatment group. These welcome emails, and 
the home screens for the trial in the app, are documented in Appendix A. Participants were informed that they 
would receive their reward payments at the end of the program following the completion of a short exit 
survey. 

 
5 All rewards were given to participants in the form of a digital shopping voucher accepted widely among Australian retailers. 
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4.3 Within-app experience 

All participants in the Load-shifting Challenge trial received push notifications on their phone five minutes 
before each event, alerting them to the start of the event and inviting them to track their progress in real-time 
in the Powerpal app, which was followed by another notification at the conclusion of the event containing a 
summary of their event earnings.6,7 The Powerpal app was an integral part of the Load-shifting Challenge, 
enabling participants to remind themselves of the parameters and conditions of the program, obtain load- 
shifting tips, track their progress in real-time as each event progressed, and access previous events.  

The within-app experience was custom-designed for each treatment group. The following screenshots pertain 
to the 5c/kWh routine-peak shave group. The screenshots that applied to the solar sponge and non-monetary 
groups are provided in Appendix B. 

 

Figure 4-1: Load-shifting Challenge home screen in Powerpal app 

 
6 Participants in the ad hoc groups received an additional notification 24 hours in advance of a scheduled event. 
7 Participants in the monetary treatments differed in the number of reward points they earnt per kWh shifted. All reward points were 
converted into a dollar amount at the same rate of 10000 to 1, with the conversion rate and equivalent financial reward per kWh 
shifted clearly shown on the Load-shifting Challenge home screen. Participants in the non-monetary treatment were notified of the 
number of stars earned during the event. 
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The Load-shifting Challenge home screen (Figure 4-1) was always accessible in the Powerpal app and provided 
information on the cumulative reward points earned to date and their monetary value. It also served to remind 
participants about the key experimental parameters, summarise their performance in previous events and 
provided warnings as well as links to a load-shifting tips page (provided in Appendix C) and an option to cancel 
their enrolment at any time. 

 

Figure 4-2: Load-shifting Challenge within event screen in Powerpal app 

The within-event screen (Figure 4-2) tracked the participants’ consumption against their personal baseline in 
real-time. It also reminded participants of how many points they could earn per kWh shifted and linked to the 
load-shifting tips page. 
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5 Data, Recruitment and Events 

5.1 Recruitment outcomes 

Over 6,000 Powerpal users accepted the invitation to participate in the Load-shifting Challenge, with an 8.9% 
acceptance rate for users without solar and a 12% acceptance rate for users with solar installations at their 
home. These users were then randomly assigned into the treatment and control groups, listed in Table 5-1. 

Table 5-1: Breakdown of the number of participants 

Treatment group Non-solar users Solar users 

G0: Control  607 809 

G1: Away + Routine + 5c/kWh 310 486 

G2: Away + Ad hoc + 5c/kWh 310 487 

G3: Away + Ad hoc + 10c/kWh - 489 

G4: Away + Ad hoc + 50c/kWh 307 490 

G5: Into + Routine + 5c/kWh 308 - 

G6: Into + Ad hoc + 5c/kWh 309 - 

G7: Into + Ad hoc + 10c/kWh 303 - 

G8: Away + Routine + Non-monetary 306 484 

Total acceptances 2,760 3,245 

Total invited 30,942 27,037 

 

A key feature of the data was that net usage was observed with a floor of 0 kWh. Given that solar panel owners 
can inject energy into the grid when their home usage is less than their solar panel generation, this resulted in 
non-trivial data censoring for these users.8 If the treatment groups were successful at increasing electricity use 
during daylight hours for solar owners, it was highly likely that we would be unable to empirically observe this 
fact. For this reason, solar users were concentrated into the “away” treatments. This was because the evening 
window during the Load-shifting Challenge window coincided with little to no sunlight, and thus net usage was 
greater than zero, allowing the incentive impacts in these windows to be observed. In contrast, non-solar users 
had complete data—their net usage was their total usage. As a result, a more complete load-shifting analysis 
could be performed on this subsample. Non-solar households were excluded from participation in G3 due to 
ex-ante sample size and statistical power considerations. The inclusion of non-solar households in G3 was not 

 
8 A data-driven method was used to designate households as solar or non-solar, and this decision was validated by examining self-
reported solar installations reported at the time of Powerpal installation. Solar installations were considered to be highly probable if at 
least twice in the pre-trial period (3 months) a household recorded 0 Wh for 4 consecutive hours; this suggested injections into the 
grid. 93% of households we classified as having no solar self-reported having no solar. 83% of households we classified as having solar 
self-reported having solar, however, the self-reporting of solar is an underestimate because it reflects solar installations at the time of 
installing Powerpal, not at the time of the trial. For this reason, the empirical classification was preferred.  
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strictly necessary for understanding the sensitivity of users to prices in the “away” treatment, hence their 
omission was of limited consequence. 

To confirm the successful randomisation of our control and treatment groups we observed pre-trial usage 
patterns across individuals. Successful randomisation would imply no difference in the mean pre-trial usage 
patterns across groups. Formally, our null and alternative hypotheses were: 

• Null: no difference in the pre-trial usage patterns across all hours of the day between the control group 
and all other groups (or usage patterns are approximately equal) 

• Alternative: statistically significant difference in the pre-trial usage patterns between the control group and 
other groups. 

We failed to reject the null hypothesis that pre-trial usage patterns across all hours of the day between the 
control group and all other groups were equal. This test confirms that randomisation was successful and is 
outlined in Section 6 after the empirical strategy is introduced. Figure 5-1 displays the hour-level means of our 
usage data in the pre-trial period (1 December–28 March) across each treatment and control category. 
Throughout, all usage data is reported in watt-hours, and given the hourly aggregation of the data, this 
approximates average watts at a point in time within each hour. These figures further highlight the pre-trial 
similarities between profiles across treatment groups within the solar and non-solar users. The figure also 
makes clear the differences across solar and non-solar users, with solar users seeing substantially lower net 
usage on average in the daylight hours.  

 
Figure 5-1: Hour-of-day average pre-trial consumption for solar (left) and non-solar (right) households by treatment group 

5.2 Events 

Events were run every day for the “Routine” groups, G1, G5 and G8. Events for the 5c/kWh and 10c/kWh ad hoc 
groups occurred 2-3 times per week, with preference given to days that were projected to be sunnier in the 
daytime given these conditions are usually more conducive to high-value load shifting opportunities. The 
50c/kWh group was targeted much less frequently (every 1 to 2 weeks) as a utility or retailer considering 
implementing Load-shifting Challenge-type programs will trade off larger incentive payments with a lower 
frequency to target days where peak prices are expected to be abnormally high. Total events and their timing 
during our trial commencing on 29 March 2022 and ending on 30 June 2022 are summarised in Table 5-2 and 
Figure 5-2. 
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Table 5-2: Number of events per treatment group 

Group characteristic Treatment groups Number of events 

Routine  G1, G5, G8 94 

Ad hoc + 5c/kWh, 10c/kWh G2, G3, G6, G7 36 

Ad hoc + 50c/kWh G4 7 

 

 

 
Figure 5-2: Calendar depiction of trial event days 

Figure 5-3 shows the half-hourly average wholesale prices on event days for each of the three event types. The 
ad hoc event days largely had similar price patterns to all days. However, the 50c/kWh event days tended to 
have lower daytime prices and higher average prices at 5 pm (reflecting that one of the events occurred when 
wholesale prices spiked). This shows that on average during our trial, the greatest value that could be 
generated from load shifting and peak shaving occurred on ad hoc 50c event days. 

 
Figure 5-3: Average wholesale electricity prices during trial events 

Key: 
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5.3 Experimental payments 

By the end of the Load-shifting Challenge trial on 30 June 2022, participants had earned the following rewards 
summed by treatment group. 

Table 5-3: Breakdown of the financial rewards by treatment group 

Treatment group Financial rewards 

G0: Control  $9,335 

G1: Away + Routine + 5c/kWh $7,505 

G2: Away + Ad hoc + 5c/kWh $4,745 

G3: Away + Ad hoc + 10c/kWh $3,425 

G4: Away + Ad hoc + 50c/kWh $6,805 

G5: Into + Routine + 5c/kWh $2,460 

G6: Into + Ad hoc + 5c/kWh $1,655 

G7: Into + Ad hoc + 10c/kWh $2,190 

G8: Away + Routine + Non-monetary $3,795 

 

Participants were paid in Prezzee vouchers, that is a voucher with a cash face value that can be redeemed at 
100+ major and specialist online retailers, upon completing the exit survey. The implementation of the Prezzee 
voucher system is low-cost, with transaction costs adding less than 1.5% to the reward amount.9 

 
9 Payments to individual participants have a $5 floor and $50 ceiling. 
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6 Empirical Strategy  
The average impact the treatment assignment had on electricity use for each hour of the day was estimated 
within the same model. This allowed for post-estimation tests relating to load shifting hypotheses. Two models 
were specified with the second being a variation on the first, allowing us to estimate the effect of ad hoc event 
days. The models take a general form similar to that of Andersen et al. (2021), adapted to explicitly take a 
difference-in-difference format. The models used the following definitions and identifiers, with each 
observation in the data uniquely identified by the household 𝑖𝑖 and the hour-of-sample 𝑡𝑡: 

𝐺𝐺𝑖𝑖,𝑔𝑔 Indicator set to 1 if household 𝑖𝑖 was allocated to treatment group 𝑔𝑔  

𝑆𝑆𝑖𝑖 Indicator set to 1 if household 𝑖𝑖 had solar panels 

𝐻𝐻𝑡𝑡,ℎ Indicator set to 1 if hour-of-day for hour-of-sample 𝑡𝑡 is equal to ℎ, where ℎ takes values 0 to 23 

𝑊𝑊𝑡𝑡 : Indicator set to 1 if hour-of-sample 𝑡𝑡 was during the trial window (date is 29 March 2022 or later) 

𝐴𝐴𝑡𝑡 : Indicator set to 1 if hour-of-sample 𝑡𝑡 was during an event day for the 5c/kWh and 10c/kWh ad hoc groups 
(core model specifications do not include the 50c/kWh group)  

𝐴𝐴𝑡𝑡′ : Indicator set to 1 if hour-of-sample 𝑡𝑡 was not during an event day for the 5c/kWh and 10c/kWh ad hoc 
groups  

𝜇𝜇ℎ , 𝜈𝜈𝑖𝑖 , 𝜂𝜂𝑑𝑑 : Hour-of-day, household, and day-of-sample fixed effects 

𝑦𝑦𝑖𝑖,𝑡𝑡 : Outcome variable for household 𝑖𝑖 in hour-of-sample 𝑡𝑡. These are either watt-hours, wholesale energy 
procurement costs (watt-hours multiplied by the wholesale electricity price in $/Wh), or total energy 
procurement cost (wholesale costs plus the costs of the incentive payments used in the project). All variables 
are in levels (without a log transformation) due to the prevalence of zero usage observations (particularly 
among solar households) and negative wholesale prices. 

The first model specification (E-1) took a modified difference-in-difference form, where separate estimates for 
the treatment effects from assignment to treatment groups were estimated for every hour of the day: 

 

𝑦𝑦𝑖𝑖,𝑡𝑡 =  𝜇𝜇ℎ + 𝜈𝜈𝑖𝑖 + 𝜂𝜂𝑑𝑑 + �𝛼𝛼ℎ𝐻𝐻𝑡𝑡,ℎ𝑊𝑊𝑡𝑡

23

ℎ=0

+ ��𝛽𝛽𝑔𝑔,ℎ𝐻𝐻𝑡𝑡,ℎ𝑊𝑊𝑡𝑡𝐺𝐺𝑖𝑖,𝑔𝑔
𝑔𝑔

23

ℎ=0

+ 𝜖𝜖𝑖𝑖,𝑡𝑡  

(E-1) 

Here, 𝛽𝛽𝑔𝑔,ℎwere the coefficients of interest, with 𝜖𝜖𝑖𝑖,𝑡𝑡 independently distributed mean zero error terms. This 
model was primarily used for partitions of the sample that only include the routine treatment groups—under 
this partition 𝛽𝛽𝑔𝑔,ℎ represents the average treatment effect of assigning participants to treatment group 𝑔𝑔 on 
outcome variable 𝑦𝑦 during hour-of-day ℎ. Recall that the control group was formed of people willing to 
participate in the Load-shifting Challenge but who did not receive any further details on the trial after being 
notified it was oversubscribed, making these average treatment effects within the set of households that were 
open to participating in the trial. (𝛽𝛽𝑔𝑔,ℎ − 𝛽𝛽𝑔𝑔′,ℎ) corresponds to the average treatment effect of assigning 

participants to treatment group 𝑔𝑔 relative to a counterfactual assignment to treatment group 𝑔𝑔′on outcome 
variable 𝑦𝑦 during hour-of-day ℎ. If ad hoc groups are included in this model, then 𝛽𝛽𝑔𝑔,ℎ represents the average 
treatment effect for assignment to group 𝑔𝑔 over both non-event and event days. The second model 
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specification (E-2) separates out the average treatment effects during non-event and event days for ad hoc 
groups. We used Ordinary Least Squares to estimate each model, with standard errors clustered at the 
household level reported and used to conduct inference.  

The following 6 Wald tests were used to inform the impacts of assignment to the various treatment groups 𝑔𝑔: 

Aggregate impact: ∑ 𝛽𝛽𝑔𝑔,ℎ = 023
ℎ=0  (T-1) 

Daytime target hours:  ∑ 𝛽𝛽𝑔𝑔,ℎ = 014
ℎ=12  (T-2) 

Evening target hours: ∑ 𝛽𝛽𝑔𝑔,ℎ = 019
ℎ=17  (T-3) 

Load shifting – daytime immediate: 𝛽𝛽𝑔𝑔,12 −  𝛽𝛽𝑔𝑔,11 = 0; 𝛽𝛽𝑔𝑔,15 −  𝛽𝛽𝑔𝑔,14 = 0 (T-4) 

Load shifting – evening immediate: 𝛽𝛽𝑔𝑔,17 −  𝛽𝛽𝑔𝑔,16 = 0; 𝛽𝛽𝑔𝑔,20 −  𝛽𝛽𝑔𝑔,19 = 0 (T-5) 

Load shifting – incentive windows: ∑ 𝛽𝛽𝑔𝑔,ℎ − ∑ 𝛽𝛽𝑔𝑔,ℎ = 019
ℎ=17

14
ℎ=12  (T-6) 

Note that tests were able to be modified to compare two treatment groups, for example (T-1), the aggregate 
impact test, becomes ∑ 𝛽𝛽𝑔𝑔,ℎ =23

ℎ=0 ∑ 𝛽𝛽𝑔𝑔′,ℎ23
ℎ=0 . 

The second model specification (E-2) took the form 

 

𝑦𝑦𝑖𝑖,𝑡𝑡 =  𝜇𝜇ℎ + 𝜈𝜈𝑖𝑖 + 𝜂𝜂𝑑𝑑 + �𝛼𝛼ℎ𝐻𝐻𝑡𝑡,ℎ𝐴𝐴𝑔𝑔,𝑡𝑡𝑊𝑊𝑡𝑡

23

ℎ=1

+ �𝛼𝛼ℎ′𝐻𝐻𝑡𝑡,ℎ𝐴𝐴𝑔𝑔,𝑡𝑡
′ 𝑊𝑊𝑡𝑡

23

ℎ=1

+ ��𝛾𝛾𝑔𝑔,ℎ𝐻𝐻𝑡𝑡,ℎ𝐴𝐴𝑔𝑔,𝑡𝑡𝐺𝐺𝑖𝑖,𝑔𝑔
𝑔𝑔

23

ℎ=0

+ ��𝛾𝛾𝑔𝑔,ℎ
′ 𝐻𝐻𝑡𝑡,ℎ𝐴𝐴𝑔𝑔,𝑡𝑡

′ 𝐺𝐺𝑖𝑖,𝑔𝑔
𝑔𝑔

23

ℎ=0

+ 𝜖𝜖𝑖𝑖,𝑡𝑡 

(E-2) 

Here, 𝛾𝛾𝑔𝑔,ℎand 𝛾𝛾𝑔𝑔,ℎ
′ were the coefficients of interest. This specification allowed for additional testing of 

hypotheses related to habit formation. The aforementioned tests relating to the first specification can also be 
conducted with interpretations being refined to the average impact of the treatment group assignment on 
outcomes on ad hoc event days (𝛾𝛾𝑔𝑔,ℎ) or ad hoc non-event days (𝛾𝛾𝑔𝑔,ℎ

′ ). For brevity, we list tests that related to 
habit formation with peak shaving during the incentive windows. 

 

Habit formation – routine and ad hoc comparison:  ∑ 𝛾𝛾𝑔𝑔,ℎ =19
ℎ=17 ∑ 𝛾𝛾𝑔𝑔′,ℎ

19
ℎ=17  (T-7) 

Habit formation – control and ad hoc comparison:  ∑ 𝛾𝛾𝑔𝑔,ℎ
′ = 019

ℎ=17  (T-8) 

Habit formation – ad hoc event / non-event comparison:  ∑ 𝛾𝛾𝑔𝑔,ℎ
′19

ℎ=17 = ∑ 𝛾𝛾𝑔𝑔,ℎ
19
ℎ=17  (T-9) 

 

Any habit formation resulting from the Load-shifting Challenge was analysed by examining the electricity usage 
of the routine and/or ad hoc treatment groups. For example, households receiving routine incentives to load 
shift may experience lower barriers to shift energy on event days relative to those receiving ad hoc incentives 
because they are more practiced and have long-run certainty that events are called each day. Alternatively, if 
there is a stock of attention and energy that households can devote to load shifting, then the routine group 
will deplete this stock more than the ad hoc group, and responses on event days will be greater for the ad hoc 
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participants. Failure to reject the routine and ad hoc comparison test (T-7) is consistent with our treatments 
generating no habit formation and not depleting a stock of attention and energy that households can devote 
to load shifting.  

However, if habit formation occurred among participants receiving ad hoc incentives, then we might expect to 
see that they load shifted on days when there is no financial incentive to do so. We should fail to reject the null 
of the control and ad hoc comparison test (T-8) if our treatments did not elicit any habit formation among our 
participants, all else being equal. However, we acknowledge that the inference we can draw from this test is 
perhaps weaker than the routine and ad hoc comparison tests: A rejection of the null here could occur for 
reasons unrelated to habit formation. For example, observing differences between the control group and an ad 
hoc group on non-event days could be due to the initial and ongoing communication received by participants 
in the ad hoc group that motivated load shifting in addition to the financial incentives offered on event days 
(whereas this messaging is common to both ad hoc and routine groups being tested in the comparison tests). 
This motivated the final test specification. The ad hoc event/non-event comparison test (T- 9) examined 
whether treatment effects were equivalent on event and non-event days, with a failure to reject the null 
suggesting responses were not driven by the financial incentives and/or there are habit formation impacts 
from the Load-shifting Challenge that resulted in equivalent load shifting on non-event and event days.  

6.1 Randomisation 

Identification of treatment impacts was predicated on the randomised assignment of users to treatment 
groups. We briefly describe the statistical support confirming a successful randomisation among the users that 
completed the trial and enter the analysis sample. 

Firstly, we conducted simple comparison of means tests for the average usage for each participant across 
different treatment groups. The mean hourly usage for the control group participants pre-trial was 572.8 Wh 
for non-solar users and 357.5 Wh for solar users. We failed to reject the equivalence of means at a 5% level for 
any treatment group compared to the relevant solar/non-solar control group, or when compared to all 
relevant solar/non-solar participants outside of their treatment group. 

Secondly, we tested for equivalent load profile shapes by modifying equation (E-1) by collapsing the data to 
contain the average watt-hours for each hour of the day for each participant (𝑦𝑦𝑖𝑖,ℎ), and define indicator 
variable 𝐻𝐻ℎ , which is set to 1 if hour-of-day is ℎ, that is, there are 24 observations per participant. The model 
below is estimated with standard error clustered at the participant-level.  

𝑦𝑦𝑖𝑖,ℎ =  �[𝛼𝛼ℎ𝑆𝑆𝐻𝐻ℎ𝑆𝑆𝑖𝑖 + 𝛼𝛼ℎ𝑁𝑁𝑆𝑆𝐻𝐻ℎ(1 − 𝑆𝑆𝑖𝑖)]
23

ℎ=1

+ ��[𝛽𝛽𝑔𝑔,ℎ
𝑆𝑆 𝐻𝐻ℎ𝑆𝑆𝑖𝑖𝐺𝐺𝑖𝑖,𝑔𝑔 + 𝛽𝛽𝑔𝑔,ℎ

𝑁𝑁𝑆𝑆𝐻𝐻ℎ(1 − 𝑆𝑆𝑖𝑖)𝐺𝐺𝑖𝑖,𝑔𝑔
𝑔𝑔

]
23

ℎ=0

+ 𝜖𝜖𝑖𝑖,ℎ 

For each treatment group we tested 𝛽𝛽𝑔𝑔,0
𝑆𝑆 = 𝛽𝛽𝑔𝑔,1

𝑆𝑆 = ⋯ = 𝛽𝛽𝑔𝑔,23
𝑆𝑆 = 0 and 𝛽𝛽𝑔𝑔,0

𝑁𝑁𝑆𝑆 = 𝛽𝛽𝑔𝑔,1
𝑁𝑁𝑆𝑆 = ⋯ = 𝛽𝛽𝑔𝑔,23

𝑁𝑁𝑆𝑆 = 0, where 
the superscripts S and NS refer, respectively, to solar and non-solar users. We failed to reject each test for 
each treatment group at a 5% level and concluded that we do not have evidence that suggests any treatment 
group has a statistically significant deviation in their average hour-to-hour load profile pre-trial. We 
consequently discuss the drivers of differences we identify in load profiles as impacts of the treatments and do 
not attribute these differences to any inherent pre-existing differences in the electricity use habits of 
participants in each treatment group.  
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7 Results 
The results are structured into two main sections, electricity use and electricity costs, followed by some 
insights from the end-of-trial survey. The electricity use section considers the impacts of the different 
incentive types on load shifting — “into” (solar sponge) versus “away” (peak shave), “routine” versus “ad 
hoc”— and the magnitude of the incentives offered (5c/kWh, 10c/kWh and 50c/kWh). We begin by highlighting 
the different responses by solar and non-solar households to the same routine incentive designs. We then 
contrast responses to these routine incentives with responses to ad hoc incentives. The electricity costs 
section then examines how wholesale procurement and program costs differ across the treatments. Finally, 
the survey section supplements the usage results by describing the self-reported characteristics and stated 
experiences of participants in the trial.  

7.1 Treatment effects on household electricity use 

7.1.1 Solar and non-solar households: same incentives, different responses 

The treatment groups G1 (routine, peak shave, 5c/kWh incentive) and G8 (routine, peak shave, non-monetary 
incentive) provided a clear starting point for examining how responses to treatments can differ across 
participant characteristics.   

Given the large number of coefficients estimated in this model (24 hours multiplied by 𝐺𝐺 treatment groups in 
addition to hour-of-day and day-of-sample fixed effects), we summarised subsets of the coefficients and 
standard errors in a figure. The black line provides the average hourly usage for the control group during the 
trial window purely for descriptive purposes and to act as a baseline for reporting the departures of each 
treatment group from the control group.10 In reporting estimates from equation (E-1), the red line adds �̂�𝛽𝑔𝑔,ℎ to 
the control group series; this reflects the estimated average usage for households in group 𝑔𝑔 in hour ℎ. A 
pointwise 95% confidence interval brackets this series, adding �̂�𝛽𝑔𝑔,ℎ  ± 1.96. 𝑠𝑠𝑠𝑠(�̂�𝛽𝑔𝑔,ℎ) to the control group 
series. For any given hour of the day where the control group series lies within the 95% confidence interval, we 
failed to reject the null hypothesis that the mean consumption for the control group and group 𝑔𝑔 are equal for 
a test with size 5%, and conversely, we rejected this null hypothesis when the control group series lies outside 
the 95% confidence interval.  

Figure 7-1 displays a sub-set of the coefficient estimates of equation (E-1) for solar and non-solar households 
relating to allocation into the routine, peak shave, 5c/kWh incentive group. The first subfigure reports 
estimates for the sample of solar households only, and the second subfigure reports estimates for the sample 
of non-solar households only.11 We detected statistically significant impacts among the solar households in the 
5 pm-8 pm peak shave window; on average, participants used 192 Wh (9%) less energy at that time than the 
solar control group. However, in the second sub-figure we did not identify any impact for the equivalent 
treatment among non-solar users for any hour of day. 

 
10 The control group series for model (E-1) is the average of the estimated day fixed-effects, �̂�𝜂𝑑𝑑   during the trial window added to the 
relevant hour-fixed effects, �̂�𝜇ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼�ℎ. 
11 In practice there are two groups 𝑔𝑔 per experimental group in equation (E-1), one for solar households and another for non-solar 
households. Further, the hourly fixed effects are also interacted with solar/non-solar status. 
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Figure 7-1: Average treatment effects for routine, peak shave, 5c/kWh incentives; Solar users (left) and Non-solar users (right) 

Figure 7-2 similarly displays a sub-set of the coefficient estimates of equation (E-1) but for the routine, peak 
shave, non-monetary incentive groups. We observed similar results to the paid incentive group—statistically 
significant impacts among the solar households in the 5 pm-8 pm peak shave window; average reduced energy 
use by participants of 163 Wh (8%) at that time than the control group—but we did not identify any impact for 
the equivalent treatment among non-solar users for any hour of day. Finally, we failed to reject tests for 
equivalent treatment effects for the 5 pm-8 pm window for solar non-monetary and 5c/kWh incentives, 
suggesting that similar reductions in energy use can be achieved without a monetary incentive for this class of 
household.12 

 
Figure 7-2: Average treatment effects for routine, peak shave, non-monetary incentives; Solar users (left) and Non-solar users (right) 

The non-solar participants displayed no evidence to suggest that they were responsive to monetary or non-
monetary incentives to use less energy in the 5 pm-8 pm peak shave window. However, there is evidence that 
they were responsive to incentives to use more energy in the 12 pm-3 pm solar sponge window, demonstrating 
that this class of customer is sensitive to the structure of incentive offered. Figure 7-3 reports estimates of 
equation (E-1) relating to the solar sponge incentives for the subset of non-solar customers allocated to the 

 
12 The p-values for Wald tests for the sum of the relevant 5 pm, 6 pm and 7 pm coefficients are: solar, monetary incentives (relative to 
the solar control group), 0.013; non-solar monetary incentives (relative to the non-solar control group), 0.69; solar, non-monetary 
incentives (relative to the solar control group), 0.017; non-solar, non-monetary incentives (relative to the non-solar control group), 
0.25. Finally, the test for the equivalent treatment effect for the monetary and non-monetary groups of solar customers returns a  
p-value of 0.72.  
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control or routine treatment groups. There are two striking features: First, there was a noticeable change in 
trajectory of the load shape at 12 pm, when the incentive window starts, suggesting that the incentive is 
motivating more usage at that time. Second, there was less energy use for most of the peak energy hours 
relative to the control. This suggests that a more effective incentive design to encourage the shaving of energy 
use by non-solar households in the evening is not to reward less energy use at that time but to instead 
encourage more energy use at an earlier time. On average, households facing this incentive design used 85 Wh 
(6%) more energy during the 12 pm-3 pm incentivised solar sponge window, and 188 Wh (8%) less energy in the 
5 pm-8 pm peak window that was not subject to incentive payments.  

 
Figure 7-3: Average treatment effects for routine, solar sponge, 5c/kWh incentives: Non-solar users 

Although there appeared to be an overall conservation of energy for non-solar households allocated to the 
solar sponge incentive group, the first entry in Table 7-1 shows that we fail to reject the null hypothesis, that 
overall energy consumption differs from the control group, at a 5% test size (T-1). However, we find evidence 
of load shifting: The third entry (T-3) of Column 1 shows that we identify peak shaving in the evening window 
relative to the control group, with the fourth entry (T-6) providing strong evidence that solar sponge 
incentives significantly reduced the disparity between middle-of-the-day and evening consumption. Similarly, 
the fifth entry (T-4) shows that we can reject that the consumption trajectory entering and exiting the daytime 
incentive windows was the same as for the control group. That is, we have evidence to suggest that the 
incentives resulted in some households delaying their 11 am usage until 12 pm or bringing forward 3 pm usage 
to 2 pm. Similar evidence exists for consumption shifts into the hours immediately prior and after the evening 
target windows. 

The second and third columns of this table demonstrate that no consumption responses or load-shifting 
responses were identified for non-solar households subject to monetary or non-monetary incentives to reduce 
usage in the evening hours.13 

 

 
13 Note that this testing regime was not repeated for the solar experimental groups due to the binding daytime data censoring for these 
households making identification of load shifting unviable compared to the peak shaving results already discussed. 
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Table 7-1: Wald test p-values for tests of treatment effects relating to usage and load shifting: Non-solar households, routine incentives 

   Solar sponge Peak shave Non-monetary 

(T-1) Aggregate   ∑ 𝛽𝛽𝑔𝑔,ℎ = 023
ℎ=0  0.324 0.661 0.816 

(T-2) Daytime target hours  ∑ 𝛽𝛽𝑔𝑔,ℎ = 014
ℎ=12  0.177 0.757 0.949 

(T-3) Evening target hours ∑ 𝛽𝛽𝑔𝑔,ℎ = 019
ℎ=17   0.019 0.688 0.256 

(T-6) Load shifting – incentive 
windows 

 ∑ 𝛽𝛽𝑔𝑔,ℎ −14
ℎ=12

∑ 𝛽𝛽𝑔𝑔,ℎ = 019
ℎ=17  

0.000 0.793 0.236 

(T-4) Load shifting – daytime 
immediate 

𝛽𝛽𝑔𝑔,12 −  𝛽𝛽𝑔𝑔,11 = 0; 
𝛽𝛽𝑔𝑔,15 −  𝛽𝛽𝑔𝑔,14 = 0 

0.000 0.830 0.615 

(T-5) Load shifting – evening 
immediate 

𝛽𝛽𝑔𝑔,17 −  𝛽𝛽𝑔𝑔,16 = 0; 
𝛽𝛽𝑔𝑔,20 −  𝛽𝛽𝑔𝑔,19 = 0 

0.048 0.444 0.101 

Summary: Non-solar households appear more sensitive to incentive design than solar households.  

Monetary and non-monetary peak shave incentives did not elicit a response for non-solar households. Solar 
households responded to either form of incentive, which suggests that this class of customer is motivated to 
act by being in a program, but without a detectable degree of price elasticity from the 0c/kWh to 5c/kWh 
incentive range. 

Non-solar households did, however, respond to monetary solar sponge incentives where they were paid to use 
more energy in the middle of the day in a very encouraging manner for policy-makers and retailers that aim to 
reduce the average cost of energy for these customers: They shifted energy use into the middle-of-day 
incentive window and reduced their energy consumption during the evening peak despite not receiving a 
direct incentive for this latter action.  

7.1.2 Routine and ad hoc incentives: opportunity for demand flexibility 

The treatment groups G1 (routine, peak shave, 5c/kWh incentive) and G2 and G3 (ad hoc, peak shave, 5c/kWh 
and 10c/kWh incentives) were suitable for examining how responses to ad hoc incentives differ from routine 
incentives for solar households. Given non-solar households did not respond to peak shave incentives, we 
limited the study for these households to how responses differed between ad hoc and routine solar sponge 
incentives (G5, G6 and G7).14 This section reports estimates of equation (E-2). 

The average treatment effects on ad hoc event days (the days coloured either green or orange in Figure 5-2) 
were considered first for solar households that were allocated to the routine peak shave group (5c/kWh) and 
the ad hoc peak shave groups (5c/kWh and 10c/kWh). The 5c/kWh and 10c/kWh ad hoc groups were combined 
throughout this section for additional power because we did not identify a statistically significant difference 

 
14 We did not find any statistically detectable treatment effects for non-solar households allocated to the ad hoc peak shave incentive 
group (similar to the routine peak shave groups discussed in the previous section) and subsequently do not report any further 
outcomes for this group in our analysis. 
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across these two payment levels.15 It was found that both ad hoc and routine groups reduced their usage 
relative to the control group in the 5 pm-8 pm peak shave window, depicted in Figure 7-4. Testing failed to 
reject that these treatment effects were equal (i.e. there was no evidence that the consumption profiles of ad 
hoc and routine groups differed).16 This suggests that there may be no routine formation benefits from every 
day incentives that drive bigger changes to consumption profiles, nor may it be problematic for households to 
respond to ad hoc events with only a day of notice relative to households that have events every day.  

Finally, those with ad hoc incentives were tested to see if they also altered their consumption profile relative to 
the control group on non-event days. No evidence was found that there were different means over the 5 pm, 
6 pm and 7 pm peak shave window on non-event days relative to the control, suggesting this was a flexible 
response to an ad hoc incentive and that the impacts did not spill over to non-event days via a change in habit 
or some other form of consumption response.17 

  
Figure 7-4: Average treatment effects on ad hoc event days, solar households, peak shave incentives; Routine incentives (left) and Ad 
hoc incentives (right) 

Next, non-solar household responses to ad hoc solar sponge incentives on event days (Figure 7-5) were 
examined. They produced a similar set of findings to the solar ad hoc results, with no evidence of differences 
between those presented with routine or ad hoc incentives on event days in either the 12 pm-3 pm or 5 pm-
8 pm windows.18 Again, this result supports a claim that there are no benefits from routine formation on 
driving bigger changes to consumption profiles, nor is it problematic for households to respond to ad hoc 
events with only a day of notice relative to households that have events every day. Further, it found no 
evidence that there were different mean levels of consumption for those in the ad hoc incentive groups on 

 
15 We failed to reject a joint test for equivalent treatment effects in the solar sponge (12 pm-3 pm) and peak shave (5 pm-8 pm) windows 
for a test of 5% size when we allow the 5c and 10c groups to enter as separate experimental groups. That is, we tested 
∑ 𝛾𝛾𝑔𝑔,ℎ =  ∑ 𝛾𝛾𝑔𝑔′,ℎ14

ℎ=12
14
ℎ=12  and ∑ 𝛾𝛾𝑔𝑔,ℎ =  ∑ 𝛾𝛾𝑔𝑔′,ℎ19

ℎ=17
19
ℎ=17  where 𝑔𝑔 is the ad hoc 5c peak shave group and 𝑔𝑔′ the ad hoc 10c peak shave 

group for solar households and fail to reject with a p-value of 0.96. We also tested ∑ 𝛾𝛾𝑔𝑔,ℎ =  ∑ 𝛾𝛾𝑔𝑔′,ℎ14
ℎ=12

14
ℎ=12  and 

∑ 𝛾𝛾𝑔𝑔,ℎ =  ∑ 𝛾𝛾𝑔𝑔′,ℎ19
ℎ=17

19
ℎ=17  where 𝑔𝑔 is the ad hoc 5c solar sponge group 𝑔𝑔′ the ad hoc 10c solar sponge group for solar households and 

fail to reject with a p-value of 0.42.  
16 Formally, we reject a 5% size test that ∑ 𝛾𝛾𝑔𝑔,ℎ =  ∑ 𝛾𝛾𝑔𝑔′,ℎ19

ℎ=17
19
ℎ=17  where 𝑔𝑔 is the ad hoc 5 and 10c peak shave group and 𝑔𝑔′ the 

routine peak shave group for solar households with a p-value of 0.17. 
17 Formally, we reject a 5% size test that ∑ 𝛾𝛾𝑔𝑔,ℎ

′ =  019
ℎ=17  where 𝑔𝑔 is the ad hoc 5 and 10c peak shave group for solar households with a 

p-value of 0.54. 
18 We failed to reject a joint test for equivalent treatment effects in the solar sponge (12 pm-3 pm) and peak shave (5 pm-8 pm) windows 
for a test of 5% size. That is, we tested ∑ 𝛾𝛾𝑔𝑔,ℎ =  ∑ 𝛾𝛾𝑔𝑔′,ℎ14

ℎ=12
14
ℎ=12  and ∑ 𝛾𝛾𝑔𝑔,ℎ =  ∑ 𝛾𝛾𝑔𝑔′,ℎ19

ℎ=17
19
ℎ=17  where 𝑔𝑔 is the ad hoc 5 and 10c solar 

sponge groups and 𝑔𝑔′ the routine solar sponge group for non-solar households and fail to reject with a p-value of 0.11. 
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non-event days when compared to the control group in the key windows of 12 pm, 1 pm, 2 pm and 5 pm, 6 pm, 
7 pm, suggesting they can provide a flexible response to an ad hoc incentive with no habit changes or other 
forms of consumption response spilling over to non-event days.19 

 
Figure 7-5: Average treatment effects on ad hoc event days, non-solar households, solar sponge incentives; Routine incentives (left) and 
Ad hoc incentives (right) 

Finally, equation (E-2) was re-specified and estimated separately for the smaller set of events that occur for the 
50c/kWh peak shave incentive group.20 Households assigned to the 50c/kWh group received a much larger 
payment than those in other peak shave groups for reducing their energy use but were eligible for fewer 
events. However, the experimental design still had all groups presented with incentives on these few event 
days, allowing for a comparison of responsiveness on these days. The model was estimated separately for solar 
and non-solar households, and for brevity Figure 7-6 only displays the estimates for those in the 50c/kWh 
incentive group and not the routine or ad hoc 5c/kWh or 10c/kWh groups on these specific event days. It can 
be seen that both solar and non-solar households were responsive on these event days, reducing their energy 
use in the evening relative to the control. This is particularly striking for the non-solar households because no 
impacts were detected from any other form of peak shave incentive (see prior section). In contrast, the 
50c/kWh incentive specification suggests that non-solar households will be responsive to peak shave incentives 
provided they are large enough. Further, their consumption profile displayed a shaving of energy use in the 
evening without any other within-day differences, meaning all the responsiveness was from conservation of 
energy and not load shifting to earlier in the day.  

 
19 That is, we tested ∑ 𝛾𝛾𝑔𝑔,ℎ

′ = 0 14
ℎ=12  and ∑ 𝛾𝛾𝑔𝑔,ℎ

′ =  019
ℎ=17  where 𝑔𝑔 is the ad hoc 5 and 10c solar sponge groups for non-solar 

households and return a p-value of 0.31. 
20 That is, we respecify 𝐴𝐴𝑡𝑡 and 𝐴𝐴𝑡𝑡′  to reflect ad hoc 50c event days and non-event days. 
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Figure 7-6: Average treatment effects on ad hoc 50c/kWh event days, 50c/kWh peak shave incentives. Solar households (left) and non-
solar households (right) 

Summary: Ad hoc incentives changed consumption profiles on event days, demonstrating the potential to 
generate flexible demand response. 

The routine incentive treatments we offered suggest that time-of-use-style tariffs and incentives can change 
load shapes and lower the average cost of supplying households. However, these tariffs do not provide 
demand response because they do not promote flexibility with respect to real-time conditions. On the other 
hand, ad hoc events can be called when market or network conditions are such that changing load profiles are 
forecast to be highly valuable on specific days. These results demonstrate that meaningful consumption 
responses can be generated on ad hoc event days, and of similar size to those offered by routine incentives.  

Finally, it was re-affirmed that non-solar households were more sensitive to incentive design, with average 
consumption in the evening decreasing on event days when offered 50c/kWh. Although they clearly were more 
responsive to solar sponge incentives compared to peak shave incentives when payments were low (5c/kWh), 
they did respond to ad hoc peak shave incentives when the payments were large enough (50c/kWh), further 
indicating the possibility for them to participate in flexible demand response.  

7.2 Electricity costs 

The core results from this report relate to electricity use. Given the demonstrated ability to alter load profiles 
with our incentive designs, price series can be envisaged whereby these shifts create economic value and a 
surplus to be shared between a household and their retailer. There are two parts to this claim. Firstly, the 
incentive design ensures that households cannot be worse off by participating: participation is conditional on 
households opting in and they will accumulate money in each treatment group (or receive a participation 
payment in the non-monetary incentive group) even without changing their behaviour. Secondly, as long as 
households move energy away from high-cost times of day and toward low-cost times of day, social costs (the 
sum of costs from electricity production, carbon emissions and other network costs that arise from using 
electricity) will decrease, meaning that economic value and/or a retailer surplus can be created without 
harming the household. 

In this section we briefly demonstrate how the changes in consumption profiles can lower the average 
wholesale energy procurement costs for customers. We estimate equation (E-1) separately for solar and non-
solar households, with the dependent variable either the wholesale energy procurements costs (watt-hours 
multiplied by the wholesale electricity price in $/Wh), or total energy procurement cost (energy procurement 
costs plus the costs of the incentive payments used in the Load-shifting Challenge), using the actual wholesale 
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prices observed during our trial. 21 The average daily cost was derived from the estimates of the model. For the 
control group, this was ∑ (𝜂𝜂�23

ℎ=0 + �̂�𝜇ℎ + 𝛼𝛼�ℎ), where 𝜂𝜂� is the average day-of-sample fixed effect estimated in the 
model over the 28 March – 30 June trial window. For treatment group 𝑔𝑔, ∑ �̂�𝛽𝑔𝑔,ℎ

23
ℎ=0  was added to the control 

group estimate. Wald tests outlined in (T-1) for ∑ �̂�𝛽𝑔𝑔,ℎ
23
ℎ=0 = 0 were conducted for each treatment group 𝑔𝑔, 

with the null hypothesis stating that the average daily wholesale procurement cost per kWh does not differ 
between the control group and treatment group 𝑔𝑔. 

Table 7-2 shows the average wholesale procurement cost estimates for solar households (acknowledging the 
imprecision of daytime usage data), and Table 7-3 shows the average wholesale procurement cost estimates 
for non-solar households. Below each estimate is the p-value of the Wald test for equivalence with the control 
group (T-1). The final column aggregates the estimates to the 90-day trial window. First examining solar 
households, we find that all treatment groups had lower wholesale procurement costs than the control group, 
suggesting that the different consumption profiles saved procurement costs. However, only the non-monetary 
group and 50c/kWh ad hoc group had savings that were large enough to reject equivalence for a test size 5% 
or 10% (p-values of 0.05 and 0.06). When including the incentive costs into these estimates, only the non-
monetary group remained significantly lower than the control group. Although solar users were responsive to 
all incentive designs, during our window we only have significant statistical evidence that the non-monetary 
group was cost-effective.  

Table 7-2: Estimates of wholesale procurement costs and program costs for solar households 

 Wholesale 
procurement cost  

($, daily average) 

Wholesale 
procurement and 
program cost  

($, daily average) 

Wholesale 
procurement and 
program cost  

($, 90-day program) 

Control  $2.91 $2.91 $261.90 

Routine peak shave (5c/kWh) $2.83 
(0.44) 

$2.92 
(0.95) 

$262.80 

Ad hoc peak shave (5 + 10c/kWh) $2.81 
(0.27) 

$2.86 
(0.58) 

$257.40 

Ad hoc peak shave (50c/kWh) $2.72 
(0.06) 

$2.80 
(0.25) 

$252.00 

Non-monetary $2.72 
(0.05) 

$2.72 
(0.05) 

$249.80 ($244.80 + $5) 

Note: p-values for Wald test for equivalence to control group listed in parentheses. Program cost for non-
monetary group includes the $5 participation payment—their payment was not dependent on their electricity 
use. 

 
21 The incentive payments were 𝑝𝑝 c/kWh ∗ 𝑘𝑘𝑊𝑊ℎ for participants receiving a solar sponge payment of 𝑝𝑝 c/kWh in a given hour, or max 
(0,𝑝𝑝 c/kWh ∗ (𝐵𝐵 − 𝑘𝑘𝑊𝑊ℎ)) for participants receiving a peak shave payment of 𝑝𝑝 c/kWh for usage below their baseline 𝐵𝐵 in a given 
hour. 
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Table 7-3: Estimates of wholesale procurement costs and program costs for non-solar households 

 Wholesale 
procurement cost  

($, daily average) 

Wholesale 
procurement and 
program cost  

($, daily average) 

Wholesale 
procurement and 
program cost  

($, 90-day program) 

Control  $3.51 $3.51 $315.90 

Routine peak shave (5c/kWh) $3.49 
(0.91) 

$3.64 
(0.50) 

$327.60 

Ad hoc peak shave (5c/kWh) $3.44 
(0.71) 

$3.50 
(0.98) 

$315.00 

Ad hoc peak shave (50c/kWh) $3.40 
(0.45) 

$3.52 
(0.94) 

$316.80 

Routine solar sponge (5c/kWh) $3.18 
(0.01) 

$3.27 
(0.10) 

$294.30 

Ad hoc solar sponge (5 + 10c/kWh) $3.30 
(0.12) 

$3.35 
(0.25) 

$301.50 

Non-monetary $3.46 
(0.76) 

$3.46 
(0.76) 

$316.40 ($311.40 + $5) 

Note: p-values for Wald test for equivalence to control group listed in parentheses. Program cost for non-
monetary group includes the $5 participation payment—their payment was not dependent on their electricity 
use. 

Conversely, for the non-solar groups program costs were not significantly different from the control for any of 
the peak shaving or non-monetary treatments. This was not surprising given that there were no observed 
consumption profile changes for non-solar households across many of the incentive designs. However, 
evidence was found that the routine solar sponge treatment drove lower wholesale procurement costs 
(p- value 0.01), with savings still meaningful when including the program costs. It was estimated that the 
wholesale procurement costs of these customers were $29 (9%) lower than the control group over 90 days, 
or $22 (7%) when including the program payments.  

Summary: Many of the treatments changed the consumption profiles of participants over the duration of the 
trial. Therefore, wholesale price conditions and patterns can be envisaged whereby price-reflective tariff 
changes could generate economic value that could be shared between households and retailers. It was 
demonstrated that, under prevailing wholesale market conditions during this three-month trial, some 
treatments decreased wholesale procurement costs, providing a demonstration of the potential for these 
programs to create value. 

7.3 Survey insights 

Upon completion of the trial window, participants (excluding those in the control group) were invited to 
complete a survey that aimed to understand their experience in the trial and what, if anything, motivated or 
facilitated their load-shifting efforts. Presented are some results that highlight how households’ behaviours 
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changed conditional on their incentive group, how motivations differed between solar and non-solar 
households, potential explanations for how the Load-shifting Challenge impacted solar and non-solar users 
differently, and how households use of load timers changed during the challenge. 

First, the focus was on the non-solar households because they were allocated to all treatment features (i.e. 
solar sponge, peak shave, and non-monetary). 60%, 67% and 57% of those allocated to solar sponge, peak 
shave, and non-monetary incentive groups responded to the survey, perhaps reflecting a slightly higher 
average reward for those allocated to a peak shave group and thus a greater incentive to respond to the 
survey and claim their reward. However, of these respondents, 95%, 95% and 96% stated that if the Load-
shifting Challenge were run again, they would choose to participate, suggesting the participant experience was 
largely positive.22 

Figure 7-7 displays responses across solar sponge, peak shave, and non-monetary incentive groups about 
whether non-solar participants attempted to use more energy or less energy in the day or evening, and 
whether they tried harder to be home or away from the home during the day or evening. It was seen that 
those given financial peak shave incentives responded similarly to those receiving non-monetary incentives, 
with a slightly higher number of those facing a financial incentive (89% vs 82%) stating they made an effort to 
decrease their evening energy use.23 However, those offered solar sponge incentives were much more likely to 
have tried to be home during the day (30% vs 12%) and more likely to state that they attempted to use more 
energy during the day (73% vs 38%) but less likely to use less energy during the evening (61% vs 89%). 
However, 61% is still a large fraction given that there was no direct financial benefit for the solar sponge 
participants to decrease energy use in the evening, and this perhaps explains why solar sponge groups 
displayed the most obvious changes to their consumption profiles, both increasing daytime consumption and 
decreasing evening consumption. This contrasts with the peak shave groups, where a large share of responses 
claimed to have decreased their evening energy use even though no observable response was detected in the 
actual energy use data.  

 
Figure 7-7: Share of participants reporting attempts to increase or decrease the amount of energy they used during the day or night; 
Non-solar households 

 
22 Similarly, 95% of solar participants allocated to a peak shave group and 93% of those allocated to the non-monetary group stated 
they would participate if the program is offered to them again. 
23 The solar users were more similar to each other, with 85% of both peak shave and non-monetary participants stating that they 
attempted to use more energy during the evening. 
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Next, motivations to participate in the Load-shifting Challenge were examined. 42% of solar households 
reported environmental reasons being more important than financial reasons for motivating their load shifting. 
Only 37% of non-solar households reported the same motivation. This slightly higher propensity for solar 
households to state an environmental motive for their load-shifting actions aligns with the empirical 
observation that solar households responded to both monetary and non-monetary peak shave incentives 
whereas the non-solar households did not. 

The survey data also provided insights into how certain household characteristics differed across solar and 
non-solar households. These characteristics may contribute or suggest mechanisms for observed differences 
in the magnitude of load shifting between solar and non-solar households. Table 7-4 compares exit survey 
results across solar and non-solar households. These results suggest that solar households may have a greater 
ability to respond to load shifting programs given their greater propensity to work from home (37% vs 33%), to 
use load timers (46% vs 36%), and to use heating and cooling appliances to load shift (66% vs 63%). Solar 
households might also have slightly higher levels of energy cognizance, reporting more educational attainment 
(88% vs 84%) and engagement with retail electricity markets (52% vs 46%), but perhaps less financial 
motivation to load shift as they less frequently report experiencing bill distress. Similarly, non-solar household’s 
higher financial motivations to load shift may also reflect that they were more budget constrained. 

Taken together, the self-reported motivations, financial capacity, energy cognizance, and ability to load shift, all 
suggest that solar households are perhaps more likely to engage in load shifting, particularly where there is no 
explicit financial incentive to do so, which is consistent with empirical observations. 

Table 7-4: Comparison of means for various household characteristics across solar and non-solar households 

 

Finally, the survey data provided insights into how the use of certain appliance features changed during the 
Load-shifting Challenge, in particular the use of load timers. 41% of respondents reported using a load timer 
during the trial. Figure 7-8 describes the appliances used by households with load timers to facilitate load 
shifting. Most of these households had a time-programmable dishwasher, washing machine or heater/cooler. 
About 50% reported their dryer having the functionality (which is relevant to this trial period as it covered 
autumn and a small amount of winter), but significantly less had pool pump or electric water heaters. The red 
portion of each column reflects the fraction of users that reported that they increased the use of their load 
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timer in the trial compared to before the trial, with 30-40% of these households using the feature more on the 
appliances where the functionality exists. This shows that a significant share of households used load timers on 
their appliances and increased their use of these features, demonstrating one vehicle for behaviour change 
from our trial.  

 
Figure 7-8: Number of participants that used the load timer on each appliance (sample restricted to those that reported having used a 
load timer during the trial) 
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8 Recommendations for Next Steps 
The Load-shifting Challenge has documented a series of opportunities for industry and policy alongside a raft 
of further research questions. 

Industry and policy 

The trial demonstrated how technology providers can leverage the investment made in smart meters to 
impact the energy-use patterns of households. For example, the simple trial programs that encouraged either 
more daytime electricity consumption or less evening consumption were successful in changing electricity use 
patterns for some segments of the population. Retailers can partner with third parties such as Powerpal to 
implement programs designed to shift energy use or communicate dynamic changes to their tariff rate. 
Network companies or policy-makers that aim to deliver more efficient price signals and directly incentivise 
households to load shift can partner with a third party such as Powerpal and side-step partnering with retailers 
if they are concerned that their network charges or program incentives will not be passed through to 
households.  

It follows that third-party providers, such as Powerpal, can facilitate programs that provide incentives for 
households to alter their electricity consumption in response to network and wholesale market conditions, 
perhaps independently of retailers with significant changes to load profile demonstrated with day-ahead event 
notice. If demand across groups of households is forecastable with reasonable accuracy, then it may be that a 
third-party can create a service that is eligible for wholesale demand-response programs. This suitability may 
improve as timed device penetration and understanding improves. 

Further research 

This research has demonstrated the willingness of some households to engage in load-shifting programs, in 
some cases in response to financial motives, in other cases in response to non-monetary incentives. It has 
shown that these responses significantly differ along one characteristic—whether the home has rooftop 
solar— suggesting that a deeper investigation into how different consumer segments respond to these 
programs may be warranted. Further, the research was conducted during autumn and part of winter in a 
summer-peaking grid. Coincidentally, it also overlapped with a period of market difficulties culminating in the 
June 2022 electricity market suspension, however it is reasonable to expect that these programs could have a 
greater impact during summer months and there is an opportunity to re-run this trial during those months. 

There are also questions regarding the mechanisms that allow for a successful load shifting program. While 
this work provided some survey evidence that the program used motivated households to more frequently use 
timer devices on their appliances, direct validation is needed to confirm this. Indeed, arriving at what might be 
considered an ideal way for household behaviour to change to help accommodate more renewables by 
automating appliances and having their output vary with market or network conditions is a process requiring 
many steps. This research demonstrated the willingness of some households to engage with load shifting in an 
unspecified manner; a logical next step is to investigate their willingness to participate in programs built around 
device automation (such as pre-heating / pre-cooling homes, water, electric vehicles etc.).  
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9 Conclusions 
This research involved the design, trial, and evaluation of the Load-shifting Challenge, an incentive program 
aimed at encouraging households to shift their within-day electricity use to align with solar energy output. The 
results of the randomised control trial demonstrate that attempting to engage households in load shifting may 
be a valuable exercise for policy-makers aiming to facilitate the integration of renewable energy, or for industry 
participants trying to create value and capture some surplus presumably to be split with their customers. The 
value opportunities in Australia from promoting more flexible demand or different usage patterns have steadily 
increased in recent years. Increased solar penetration, in particular, has resulted in suppressed daytime prices 
and increased evening prices. 

The results showed that simple, and potentially small, incentives can change aggregate consumption profiles 
among our participants, whether offered every day or on an ad hoc basis. Changed consumption profiles on 
event days prompted by ad hoc incentives demonstrate the potential to generate flexible demand response. 

The observed responses to routine incentives suggest that time-of-use-style tariffs can change load shapes and 
lower the average cost of supplying households. This suggests that a retailer-customer surplus can be created 
if customers move from time-invariant fixed rates to time-of-use fixed rates. However, these tariffs do not 
provide demand response because they do not promote flexibility with respect to real-time conditions. On the 
other hand, ad hoc events can be called when market or network conditions are such that changing load 
profiles is forecast to be particularly valuable on specific days. These results demonstrate that meaningful 
consumption responses can be generated by households on ad hoc event days, and of similar size to responses 
generated by households that receive every day incentives.   

Further, this research clearly documents the importance of targeting and tailoring programs to users. A key 
characteristic of households in the context of energy pricing programs is whether they have rooftop solar. 
Participating households without solar installations were shown to be more sensitive to incentive design than 
solar households. For example, monetary and non-monetary peak shave incentives did not elicit a response for 
non-solar households for incentives in the range of 0c/kWh to 5c/kWh.  

Solar households responded to either form of incentive by decreasing their peak usage by 9%. This suggests 
that this class of customer is motivated to act by being in a program but without a detectable degree of price 
elasticity from the 0c/kWh to 5c/kWh incentive range.  

Non-solar households did, however, respond to monetary solar sponge incentives where they were paid to use 
more energy in the middle of the day. Specifically, these households increased energy use into the middle-of-
day incentive window by an average of 6%. They also decreased energy consumption during the evening peak 
by an average of 8%, despite not receiving a direct incentive to do so. These results are encouraging for policy-
makers and retailers that aim to reduce the average cost of energy for these customers. 

Finally, non-solar households were found to respond to peak shave incentives only when the reward was 
substantial (50c/kWh). Hence, non-solar households engaged with and responded to some but not all load 
shifting incentives, emphasising that benefits can be improved from careful incentive design and targeting. 

Given that participant consumption profiles were impacted by many of the incentives offered under the Load-
shifting Challenge, wholesale price conditions and patterns can be envisaged whereby these incentives will 
generate economic value and a surplus for both households and retailers. Despite the short trial duration, 
some treatments were shown to have decreased wholesale procurement costs under prevailing wholesale 
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market conditions, providing a simple demonstration of the potential for these types of programs to create 
value. It follows that there are opportunities for industry or policy-makers to partner with third-party 
electricity data providers that directly communicate with households to implement load-shifting programs that 
create value or achieve policy goals. 
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Appendix A: General Load-shifting Challenge invitation and 
welcome email to the non-monetary peak shave group
 

Load-shifting Challenge invitation 
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Appendix B: Screenshots of within-app experience for solar 
sponge and non-monetary groups
 

Solar sponge group within-app experience 

 

 

 

Non monetary group within-app experience 
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Appendix C: Screenshot of within-app load shifting tips 
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